Activities

Activity 4.1. Surface areas of Archimedean solids

Materials: Worksheet 4.1 (transparency if using overhead projector) and copies for students.

Objective: Learn to calculate the surface areas of polyhedra by calculating the areas of the individual faces and summing over all the faces.

Vocabulary: Archimedean solid, face, vertex, edge, cuboctahedron, truncated octahedron, truncated cube

Specific Common Core State Standard for Mathematics addressed by the activity: Solve real-world and mathematical problems involving area, volume and surface area of two- and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. (7.G 6)

Activity Sequence:

1. Pass out the worksheet.

2. Write the vocabulary terms on the board and discuss the meaning of each one. *Definitions of vocabulary terms may be found in the glossary at the back of the book.*

3. Have the students perform the first task on the worksheet. This requires using the formula for the area of a triangle in terms of its base and height, and then adding the areas of the individual faces. Ask a student to share his or her result and to describe how it was calculated. $6 + 2\sqrt{3}$.

4. Have the students perform the second task on the worksheet. This involves calculating the area of a regular hexagon. The easiest way to do this is to recognize that the hexagon can be divided into six equilateral triangles. Ask a student to share his or her result and to describe how it was calculated. $6 + 12\sqrt{3}$.

5. Have the students use their calculators to get an approximate ratio of the area of these two polyhedra. *A truncated octahedron has a surface area approximately 2.83 times that of a cuboctahedron with the same edge lengths.*

6. Have the students perform the third task on the worksheet. This involves calculating the area of a regular octagon. Ask a student to share his or her result and to describe how it was calculated.

A regular octagon with unit edge length has an area of $2 + 2\sqrt{2}$. The total surface area of the truncated cube is $12 + 12\sqrt{2} + 2\sqrt{3}$. The cube has surface area $6(1 + \sqrt{2})^2 = 18 + 12\sqrt{2}$. The ratio of the surface area of the truncated cube to that of the cube is approximately 0.927.

Worksheet 4.1. Surface areas of Archimedean solids

Calculate the surface area of a cuboctahedron with edges of length 1. The height of an equilateral triangle with base equal to 1 is $\sqrt{3/2}$.

Calculate the surface area of a truncated octahedron with edges of length 1. How do the surface areas of these two polyhedra compare?

Truncated Cube

Calculate the surface area of a truncated cube with edges of length 1. The diagram at right will help you calculate the area of a regular octagon. If the truncated cube was formed by removing the corners of a cube as shown, how do the surface areas of the two solids compare?