Solve for x in each equation. Then use the value of x and the given value of y to form an ordered pair of numbers (x,y).

χ	
x + 2 = -3	
2x - 6 = -14	
2x = -3 + x	
2x - 10 = -14	
4x = x - 3	
2x - 6 = x - 6	
3x - 4 = -1	
2x - 5 = x - 3	
3x = 3 + 2x	
4x - 5 = 3x - 1	
2 - 2x = 7 - 3x	
4x + 2 = -3 + 3x	
3x + 4 = 2x - 1	
3x - 1 = -6 + 2x	
4-2x=-1-3x	
x - 3x = -(5 + 3x)	
3x - 1 = 9 + x	
3x - 12 = x - 2	
x + 2 - 3 x = 5 - 3x + 2	
6x - 2 = 3 + 5x	
3x - 2 = -5 + 4x - 2	

	у				
	5	Α	(,	5)
	5	В	(,	5)
	5	С	(,	5)
	5	D	(,	5)
	5	Е	(,	5)
	5	F	(,	5)
	5	G	(,	5)
,	5	Н	(,	5)
	5	I	(,	5)
	5	J	(,	5)
	5	K	(,	5)
	4	L	(,	4)
;	3	М	(,	3)
;	2	Ν	(,	2)
	1	О	(,	1)
(0	Р	(,	0)
	4	Q	(,	4)
y ;	3	R	(,	3)
:	2	S	(,	2)
	1	Т	(,	1)
	^		,	_	

Locate the ordered number pairs as points in the coordinate plane and label each point with its corresponding letter.

0

Draw segments AP, AK, KU.

Draw segments AQ, BR, CS, DT, EU.

Draw segments KL, JM, IN, HO, GP.

Activity 13

The design you have drawn is symmetrical with the Y axis as the axis of symmetry. Now, draw another symmetrical design with the X axis as the axis of symmetry. For example, $A_1(-5,-5)$ is the mirror image of A, and $Q_1(5,-4)$ is the mirror image of Q.

Draw segment $\overline{A_1Q_1}$ which is the mirror image of \overline{AQ} , $\overline{B_1R_1}$ which is the mirror image of \overline{BR} , and so on.

